Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1287256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116002

RESUMO

In recent years, the therapeutic (re)activation of innate anticancer immunity has gained prominence, with therapeutic blocking of the interaction of Signal Regulatory Protein (SIRP)-α with its ligand CD47 yielding complete responses in refractory and relapsed B cell lymphoma patients. SIRP-α has as crucial inhibitory role on phagocytes, with e.g., its aberrant activation enabling the escape of cancer cells from immune surveillance. SIRP-α belongs to a family of paired receptors comprised of not only immune-inhibitory, but also putative immune-stimulatory receptors. Here, we report that an as yet uninvestigated SIRP family member, SIRP-beta 2 (SIRP-ß2), is strongly expressed under normal physiological conditions in macrophages and granulocytes at protein level. Endogenous expression of SIRP-ß2 on granulocytes correlated with trogocytosis of cancer cells. Further, ectopic expression of SIRP-ß2 stimulated macrophage adhesion, differentiation and cancer cell phagocytosis as well as potentiated macrophage-mediated activation of T cell Receptor-specific T cell activation. SIRP-ß2 recruited the immune activating adaptor protein DAP12 to positively regulate innate immunity, with the charged lysine 202 of SIRP-ß2 being responsible for interaction with DAP12. Mutation of lysine 202 to leucine lead to a complete loss of the increased adhesion and phagocytosis. In conclusion, SIRP-ß2 is a novel positive regulator of innate anticancer immunity and a potential costimulatory target for innate immunotherapy.


Assuntos
Antígenos de Diferenciação , Lisina , Humanos , Lisina/metabolismo , Receptores Imunológicos/metabolismo , Imunidade Inata , Macrófagos
2.
Front Immunol ; 14: 1233113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559730

RESUMO

Investigations into the strength of antigen-specific responses in vitro is becoming increasingly relevant for decision making in early-phase research of novel immunotherapeutic approaches, including adoptive cell but also immune checkpoint inhibitor (ICI)-based therapies. In the latter, antigen-specific rapid and high throughput tools to investigate MHC/antigen-specific T cell receptor (TCR) activation haven't been implemented yet. Here, we present a simple and rapid luminescence-based approach using the human papillomavirus 16 (HPV16) E711-20 peptide as model antigen and E7-TCR transgenic Jurkat.NFAT-luciferase reporter cells. Upon E7 peptide pulsing of HLA-A2+ cell lines and macrophages, an effector to target ratio dependent increase in luminescence compared to non-pulsed cells was observed after co-incubation with E7-TCR expressing Jurkat, but not with parental cells. Analogous experiments with cells expressing full-length HPV16 identified that E7-specific activation of Jurkat cells enabled detection of endogenous antigen processing and MHC-I presentation. As proof of concept, overexpression of established checkpoints/inhibitory molecules (e.g., PD-L1 or HLA-G) significantly reduced the E7-specific TCR-induced luminescence, an effect that could be restored after treatment with corresponding targeting antagonistic antibodies. Altogether, the luminescence-based method described here represents an alternative approach for the rapid evaluation of MHC-dependent antigen-specific T cell responses in vitro. It can be used as a rapid tool to evaluate the impact of the immunosuppressive tumor microenvironment or novel ICI in triggering effective T cell responses, as well as speeding up the development of novel therapeutics within the immune-oncology field.


Assuntos
Apresentação de Antígeno , Luminescência , Humanos , Antígeno HLA-A2 , Receptores de Antígenos de Linfócitos T/metabolismo , Peptídeos
3.
Front Immunol ; 14: 1191866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545491

RESUMO

A higher density of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment, particularly cytotoxic CD8+ T cells, is associated with improved clinical outcome in various cancers. However, local inhibitory factors can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from various cancer types express the co-stimulatory Tumor Necrosis Factor receptor CD27, making it a potential target for co-stimulation and re-activation of tumor-infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical responses remain limited. This is likely because current monoclonal antibodies fail to effectively activate CD27 signaling, as this receptor requires higher-order receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR, that targets both CD27 and the tumor antigen, epidermal growth factor receptor (EGFR). By targeting EGFR, which is commonly expressed on carcinomas, CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27. The design of CD27xEGFR includes an Fc-silent domain, which is designed to minimize potential toxicity by reducing Fc gamma receptor-mediated binding and activation of immune cells. CD27xEGFR bound to both of its targets simultaneously and triggered EGFR-restricted co-stimulation of T cells as measured by T cell proliferation, T cell activation markers, cytotoxicity and IFN-γ release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of artificial antigen-presenting carcinoma cell line models, leading to Effector-to-Target ratio-dependent elimination of cancer cells. Taken together, we present the in vitro characterization of a novel bispecific antibody that re-activates T cell immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/terapia , Transdução de Sinais , Receptores ErbB , Microambiente Tumoral
4.
Cell Death Discov ; 9(1): 228, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37407572

RESUMO

Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.

5.
Biomedicines ; 10(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625912

RESUMO

CD24 and its ligand Siglec-10 were described as an innate immune checkpoint in carcinoma. Here, we investigated this axis in B-cell lymphoma by assessing CD24 expression and evaluating pro-phagocytic effects of CD24 antibody treatment in comparison to hallmark immune checkpoint CD47. In mantle cell lymphoma (MCL) and follicular lymphoma patients, high mRNA expression of CD24 correlated with poor overall survival, whereas CD47 expression did not. Conversely, CD24 expression did not correlate with survival in diffuse large B-cell lymphoma (DLBCL), whereas CD47 did. CD24 was also highly expressed on MCL cell lines, where treatment with CD24 antibody clones SN3 or ML5 potently induced phagocytosis, with SN3 yielding >90% removal of MCL cells and triggering phagocytosis of primary patient-derived MCL cells by autologous macrophages. Treatment with CD24 mAb was superior to CD47 mAb in MCL and was comparable in magnitude to the effect observed in carcinoma lines. Reversely, CD24 mAb treatment was less effective than CD47 mAb treatment in DLBCL. Finally, phagocytic activity of clone SN3 appeared at least partly independent of antibody-dependent cellular phagocytosis (ADCP), suggesting CD24/Siglec-10 checkpoint activity, whereas clone ML5 solely induced ADCP. In conclusion, CD24 is an immunotherapeutic target of potential clinical relevance for MCL, but not DLBCL.

6.
Sci Rep ; 11(1): 20499, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654826

RESUMO

The presence of T cells that are dimly positive for the B cell marker CD20 is well-established in autoimmunity and correlates with disease severity in various diseases. Further, we previously identified that the level of CD20-positive T cells was three-fourfold elevated in ascites fluid of ovarian carcinoma patients, together suggesting a role in both autoimmunity and cancer. In this respect, treatment of autoimmune patients with the CD20-targeting antibody Rituximab has also been shown to target and deplete CD20-positive T cells, previously identified as IFN-gamma producing, low proliferative, CD8 cytotoxic T cells with an effector memory (EM) differentiation state. However, the exact phenotype and relevance of CD20-positive T cells remains unclear. Here, we set out to identify the transcriptomic profile of CD20-positive T cells using RNA sequencing. Further, to gain insight into potential functional properties of CD20 expression in T cells, CD20 was ectopically expressed on healthy human T cells and phenotypic, functional, migratory and adhesive properties were determined in vitro and in vivo. Together, these assays revealed a reduced transmigration and an enhanced adhesive profile combined with an enhanced activation status for CD20-positive T cells.


Assuntos
Antígenos CD20/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Migração Transendotelial e Transepitelial , Animais , Linhagem Celular , Voluntários Saudáveis , Humanos , Células T de Memória/fisiologia , Camundongos , Cultura Primária de Células , Baço/imunologia
7.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652766

RESUMO

Elevated activation of the autophagy pathway is currently thought to be one of the survival mechanisms allowing therapy-resistant cancer cells to escape elimination, including for cytarabine (AraC)-resistant acute myeloid leukemia (AML) patients. Consequently, the use of autophagy inhibitors such as chloroquine (CQ) is being explored for the re-sensitization of AraC-resistant cells. In our study, no difference in the activity of the autophagy pathway was detected when comparing AraC-Res AML cell lines to parental AraC-sensitive AML cell lines. Furthermore, treatment with autophagy inhibitors CQ, 3-Methyladenine (3-MA), and bafilomycin A1 (BafA1) did not re-sensitize AraC-Res AML cell lines to AraC treatment. However, in parental AraC-sensitive AML cells, treatment with AraC did activate autophagy and, correspondingly, combination of AraC with autophagy inhibitors strongly reduced cell viability. Notably, the combination of these drugs also yielded the highest level of cell death in a panel of patient-derived AML samples even though not being additive. Furthermore, there was no difference in the cytotoxic effect of autophagy inhibition during AraC treatment in matched de novo and relapse samples with differential sensitivity to AraC. Thus, inhibition of autophagy may improve AraC efficacy in AML patients, but does not seem warranted for the treatment of AML patients that have relapsed with AraC-resistant disease.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Células Tumorais Cultivadas
8.
Biomedicines ; 10(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052746

RESUMO

In earlier studies, galectin-9 (Gal-9) was identified as a multifaceted player in both adaptive and innate immunity. Further, Gal-9 had direct cytotoxic and tumor-selective activity towards cancer cell lines of various origins. In the current study, we identified that treatment with Gal-9 triggered pronounced membrane alterations in cancer cells. Specifically, phosphatidyl serine (PS) was rapidly externalized, and the anti-phagocytic regulator, CD47, was downregulated within minutes. In line with this, treatment of mixed neutrophil/tumor cell cultures with Gal-9 triggered trogocytosis and augmented antibody-dependent cellular phagocytosis of cancer cells. Interestingly, this pro-trogocytic effect was also due to the Gal-9-mediated activation of neutrophils with upregulation of adhesion markers and mobilization of gelatinase, secretory, and specific granules. These activation events were accompanied by a decrease in cancer cell adhesion in mixed cultures of leukocytes and cancer cells. Further, prominent cytotoxicity was detected when leukocytes were mixed with pre-adhered cancer cells, which was abrogated when neutrophils were depleted. Taken together, Gal-9 treatment potently activated neutrophil-mediated anticancer immunity, resulting in the elimination of epithelial cancer cells.

9.
Oncotarget ; 8(40): 67344-67354, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978037

RESUMO

The t(8;21) (q22;q22) chromosomal translocation is one of the most frequent genetic alterations in acute myeloid leukemia (AML) which has a need for improved therapeutic strategies. We found PLC-γ1 as one of the highest phosphorylated peptides in t(8;21) AML samples compared to NBM or CN-AML in our previous peptide microarray. PLC-γ1 is known to play a role in cancer progression, however, the impact of PLC-γ1 in AML is currently unknown. Therefore, we aimed to study the functional role of PLC-γ1 by investigating the cellular growth, survival and its underlying mechanism in t(8;21) AML. In this study, PLC-γ1 expression was significantly higher in t(8;21) AML compared to other karyotypes. The PLC-γ1 protein expression was suppressed in AML1-ETO knock down cells indicating that it might induce kasumi-1 cell death. ShRNA-mediated PLC-γ1 knockdown in kasumi-1 cells significantly blocked cell growth, induced apoptosis and cell cycle arrest which was explained by the increased activation of apoptotic related and cell cycle regulatory protein expressions. Gene expression array analysis showed the up-regulation of apoptotic and DNA damage response genes together with the downregulation of cell growth, proliferation and differentiation genes in the PLC-γ1 suppressed kasumi-1 cells, consistent with the observed phenotypic effects. Importantly, PLC-γ1 suppressed kasumi-1 cells showed higher chemosensitivity to the chemotherapeutic drug treatments and lower cell proliferation upon hypoxic stress. Taken together, these in vitro finding strongly support an important role for PLC-γ1 in the survival of t(8;21) AML mimicking kasumi-1 cells and identify PLC-γ1 as a potential therapeutic target for t(8;21) AML treatment.

10.
PLoS One ; 10(10): e0141381, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26496080

RESUMO

Recent clinical trials investigating receptor tyrosine kinase (RTK) inhibitors showed a limited clinical response in medulloblastoma. The present study investigated the role of micro-environmental growth factors expressed in the brain, such as HGF and EGF, in relation to the effects of hepatocyte growth factor receptor (MET) and epidermal growth factor receptor family (ErbB1-4) inhibition in medulloblastoma cell lines. Medulloblastoma cell lines were treated with tyrosine kinase inhibitors crizotinib or canertinib, targeting MET and ErbB1-4, respectively. Upon treatment, cells were stimulated with VEGF-A, PDGF-AB, HGF, FGF-2 or EGF. Subsequently, we measured cell viability and expression levels of growth factors and downstream signaling proteins. Addition of HGF or EGF phosphorylated MET or EGFR, respectively, and demonstrated phosphorylation of Akt and ERK1/2 as well as increased tumor cell viability. Crizotinib and canertinib both inhibited cell viability and phosphorylation of Akt and ERK1/2. Specifically targeting MET using shRNA's resulted in decreased cell viability. Interestingly, addition of HGF to canertinib significantly enhanced cell viability as well as phosphorylation of Akt and ERK1/2. The HGF-induced bypass of canertinib was reversed by addition of crizotinib. HGF protein was hardly released by medulloblastoma cells itself. Addition of canertinib did not affect RTK cell surface or growth factor expression levels. This manuscript points to the bypassing capacity of exogenous HGF in medulloblastoma cell lines. It might be of great interest to anticipate on these results in developing novel clinical trials with a combination of MET and EGFR inhibitors in medulloblastoma.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Fator de Crescimento de Hepatócito/fisiologia , Morfolinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Crizotinibe , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/metabolismo , Humanos , Meduloblastoma , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
11.
PLoS One ; 10(3): e0122555, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799134

RESUMO

Up to now, several clinical studies have been started investigating the relevance of receptor tyrosine kinase (RTK) inhibitors upon progression free survival in various pediatric brain tumors. However, single targeted kinase inhibition failed, possibly due to tumor resistance mechanisms. The present study will extend our previous observations that vascular endothelial growth factor receptor (VEGFR)-2, platelet derived growth factor receptor (PDGFR)ß, Src, the epidermal growth factor receptor (ErbB) family, and hepatocyte growth factor receptor (HGFR/cMet) are potentially drugable targets in pediatric low grade astrocytoma and ependymoma with investigations concerning growth-factor-driven rescue. This was investigated in pediatric low grade astrocytoma and ependymoma cell lines treated with receptor tyrosine kinase (RTK) inhibitors e.g. sorafenib, dasatinib, canertinib and crizotinib. Flow cytometry analyses showed high percentage of cells expressing VEGFR-1, fibroblast growth factor receptor (FGFR)-1, ErbB1/EGFR, HGFR and recepteur d'origine nantais (RON) (respectively 52-77%, 34-51%, 63-90%, 83-98%, 65-95%). Their respective inhibitors induced decrease of cell viability, measured with WST-1 cell viability assays. At least this was partially due to increased apoptotic levels measured by Annexin V/Propidium Iodide apoptosis assays. EGF, HGF and FGF, which are normally expressed in brain (tumor) tissue, showed to be effective rescue inducing growth factors resulting in increased cell survival especially during treatment with dasatinib (complete rescue) or sorafenib (partial rescue). Growth-factor-driven rescue was less prominent when canertinib or crizotinib were used. Rescue was underscored by significantly activating downstream Akt and/or Erk phosphorylation and increased tumor cell migration. Combination treatment showed to be able to overcome the growth-factor-driven rescue. In conclusion, our study highlights the extensive importance of environmentally present growth factors in developing tumor escape towards RTK inhibitors in pediatric low grade astrocytoma and ependymoma. It is of great interest to anticipate upon these results for the design of new therapeutic trials with RTK inhibitors in these pediatric brain tumors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Astrocitoma/tratamento farmacológico , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Crizotinibe , Dasatinibe/uso terapêutico , Dasatinibe/toxicidade , Ependimoma/tratamento farmacológico , Ependimoma/metabolismo , Ependimoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Niacinamida/toxicidade , Compostos de Fenilureia/uso terapêutico , Compostos de Fenilureia/toxicidade , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Pirazóis/toxicidade , Piridinas/uso terapêutico , Piridinas/toxicidade , Sorafenibe
12.
Proteomics ; 15(7): 1245-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25422122

RESUMO

Still about 20% of patients with acute lymphoblastic leukemia (ALL) struggle with relapse, despite intensive chemotherapy. We and others have shown that kinase activity profiling is able to give more insights in active signal transduction pathways and point out interesting signaling hubs as well as new potential druggable targets. With this technique the gap between newly designed drugs and ALL may be bridged. The aim of this study was to perform kinome profiling on 20 pediatric ALL samples (14 BCP-ALL and six T-ALL) to identify signaling proteins relevant to ALL. We defined 250 peptides commonly activated in both BCP-ALL and T-ALL representing major signal transduction pathways including MAPK, PI3K/Akt, and regulators of the cell cycle/p53 pathway. For 27 peptides, differentially phosphorylation between BCP-ALL and T-ALL was observed. Among these, ten peptides were more highly phosphorylated in BCP-ALL while 17 peptides showed increased phosphorylation in T-ALL. Furthermore we selected one lead of the list of commonly activated peptides (HGFR_Y1235) in order to test its efficacy as a potential target and provide proof of principle for this approach. In conclusion kinome profiling is an elegant approach to study active signaling and identify interesting potential druggable targets.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Proteínas Quinases/metabolismo , Adolescente , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Criança , Descoberta de Drogas , Humanos , Terapia de Alvo Molecular , Fosfoproteínas/metabolismo , Fosforilação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...